8.3. SPECIAL METHODS 217

8.3 Special Methods

There are a number of method names that have special significance in Python.
One of these we have already seen: the constructor method is always named
_dinit__ (). This method is called whenever a new object of the class is created;
its purpose is to give initial values to the instance variables of the object. In this
section we will see a number of similar methods that have pre-defined meanings.
All of these have names that start and end with two underscores.
First, the method __str__ (self) is called whenever the system needs to have
a string representation of the object. This method should return the string
representation. If x is an object of a class containing this method, the following
statements will all result in calls to _str__ ():

print (x)
print ("%s" % x)
y = str(x)

For example, the Person class from section 7.1 might have such a method:

class Person:
def __init__(self, myName):
self .name = myName
self.age =0

def __str__(self):
return "%s is %d years old."% (self.name, self.age)

Program 8.3.1: A Person constructor and __str__ method

This would eliminate the need for a separate Print() method for this class; we
could use the standard Python print statement to print objects of the class. Of
course, nothing requires us to return a string containing all of the instance vari-
ables of the class. For some applications we might want the string representation
of a person to consist of just the persons name:

def __str__(self):
return self.name

We can also define methods that implement arithmetic operators in any
class. The methods:

__add__(self,
__sub__(self,
_-mul__(self,
__div__(self,

X X X X

— — — —

218

are called when the operators +, —, *,and / are used. Each of these methods
should return a new object that is the result of the operation. For example,
if a and b are objects of a class that defines these operators, we might use the
statement

c = atb

Variable ¢ then gets the value that is returned from the call to the method
_-add__(a, b). Argument self refers to the object that is the left operand and
argument x is the right operand.

In the next example we define a class Cents that represents money. Objects
of this class have one instance variable, which holds the value of the object in
pennies (so a value of 420 represents $4.20). We define a _str__ () method
to allow objects of the class to be printed, and an __add__() method to allow
monetary values to be added.

class Cents:
def __init__(self, x):
self . value = x

def __str__(self):
dollars = self.value/100
cents = self.value % 100
if cents < 10:
return "$%d.0%d” % (dollars, cents)
else:
return "$%d.%d" % (dollars , cents)

def __add__(self, x):
v = self.value 4+ x.value
return Cents(v)

def main():
x = Cents(405)
y = Cents(995)
print ("%s + %s = %s" % (x, y, xt+y))

main ()

Program 8.3.2: Adding elements of a class

We can also implement methods that allow us to use comparison operators
between objects of a class. The method names

ot (self, x)
__le__(self, x)

8.3. SPECIAL METHODS 219

__eq__(self, x)
__ne__(self, x)
__ge__(self, x)

__gt__(self, x)

refer to the operations <, <=, ==, |=, >= >. In particular, if the __lt__ ()
method is defined, then lists of objects of this can be sorted with the list sort()
method.

Our last example adds comparison operators to the Name class we created
in Section 8.2. We use the usual phone-book ordering for names: a < b if a’s
last name comes before b’s in alphabetical ordering, or if the two last names are
the same and a’s first name comes before b’s first name. In the name class the
instance variable that holds the last name is self . family, and the variable that
holds the first name is self . given. Our comparison operator is thus

def __lt__(self, x):

if self.family < x.family:
return True

elif self.family > x.family:
return False

elif self.given < x.given:
return True

else:
return False

This turns the class definition into

220

class Name:
def __init__(self, str):
str = str.strip ()
if str = "":
self.family ="
self.given =""

else:
names = str.split ()
n = len(names)
self.family = names[n—1]
given = ""
for name in names[0:n—1]:

given = given + name + "

self.given = given

def GivenName(self):
return self.given

def LastName(self):
return self.family

def FirstName(self):
if self.given =
return ""
else:
names = self.given.split ()
return names[0]

(RTINS

def FullName(self):
if self.given = :
return self.family
else:
return self.given+self. family

nono

def __It__(self, x):

if self.family < x.family:
return True

elif self.family > x.family:
return False

elif self.given < x.given:
return True

else:
return False

”

The Name class with a comparison operation

8.3. SPECIAL METHODS

221

We now return to the Person class that uses Name. If we add a simple comparison
function to this, just comparing the names, we can then sort lists of Persons:

class

main ()

import MyNameClass

Person:

def __init__(self, myName):
self.name = MyNameClass.Name(myName

self.age =0

def SetAge(self, a):

self.age = a

def GetOlder(self):

self.age = self.age + 1

def Print(self):
print("%s %s"” %(self.name.FirstName(),

self.name.LastName()))
def __lt__(self, x):

return self.name < x.name

def main():
L=]
L.append(Person("Harry Potter”))
L.append(Person("Hermione Granger”))
L.append(Person("Ron Weasley”))
L.append(Person (" Albus Dumbledore”))
L.append(Person("Severus Snape”))
L.append(Person("Draco Malfoy”))
L.sort()

for person in L:

person. Print ()

~—

Program 8.3.3: Sorting elements of the Person class

This outputs

222

Albus Dumbledore
Hermione Granger
Draco Malfoy
Harry Potter
Severus Snape
Ron Weasley

